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ABSTRACT

The t’~ f.-c t of segmental motion on the density-density correlation

func tion of n v iscous polymer li quid has been analyzed using a general-

ized relaxation equation developed by Zwanzig and Mon . It is shown that for

polymer liquids of high viscosity Bri.llouin scattering is closely asso-

F . :- ciated with the structural relaxation associated with the motion of

chain segments. A single relaxa tion t ime theory is shown to yield

good agreement with the experimental results on polypropylene glycol.

The torsional motion involving a small number of monomer units is shown

to be responsible for the dispers ion and attenuation of the hypersonic

wave . The fact that the Brillouin scattering spectrum of a polymer ii-

quid is insensitive to the change of molecular weight is discussed.

We have shown that temporal modulation of the spatial second moment of

the intermolecular or inter-segmental interaction energy is responsible

for the relaxation process involved in Brillouin scattering.
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INTRODUCTION

Measurements of viscoelastic properties of undiluted polymers and

polymer solutions can provide information about the nature and rates

‘ 

of the configurational rearrangements. A knowledge of the translation-

al and rotational motion of polymer molecules and their segments has

been important in elucidating the structure of macromolecules in the

liquid state.1

Modern developments in optical technology-have made polarized Ray-

leigh-Bnillouin scattering spectroscopy one of the most useful methods

for the investigation of viscoelasticity of macromolecules in the high

frequency (lOs 
Hz) range.

Recen t experimental studies have shown tha t the Raylei gh-Brillouin

spectra of polymer fluids are sensitive to the molecular configurational

rearrangements and segmental motion of flexible polymer chains .2 There

is at present, however, no procedure or guideline wi th which quantita-

tive information about the polymer dynamics can be extracted from the

experimental data using this technique. The field of inelastic laser

light sca ttering of polymers and polymer solutions is presently in a

stage of development.

In the low frequency range, the bead-spring (Rouse-Zim) model pro-

vides an adequate description of the dynamic properties of macromolecules

in solution . At high frequencies the polymer chain dynamics are governed

by localized motion involving only a few segments. The length of the

polymer chain is not expected to greatly affect the chain dynamics. In

other words, one does not expect the Bnillouin spectrum of polymers to

be sensitive to the change of molecular weight. This was indeed observed

experimen ta l ly . 3”~
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However , we still do not know at present how the smal l scale mo-

-

. 

tion involving very few segments affects the Rayleigh-Brillouin spec-

trum of a polymer solution . In other words , we do not know how to

• relate the hypersonic data of a polymer system to the dynamics of seg-

mental motion.

To analyze the type of information that one may learn by studying

the Brillouin-Rayleigh spectrum of a polymer fluid , we have investi-

gated theoretically the effec t of polymer segmental motion on the den-

sity-density time correlation function . The density-density time cor-

relation function is proportional to the Fourier transform of the ob-

served Brillouin-Rayleigh spectrum. In the present paper , we have

analyzed the relaxation process involved in affecting the peak fre-

quency and the linewidth of the Brillouin spectrum of a polymer li-

quid. Finally, we have used the linear response theory introduced

by Zwanzi g to analyze the motion of t h e normal mode of a bulk polymer

l iquid. We have interpreted the Br illouin spectra of pure polypro-

py lene glycol liquids in terms of this new theoretical result.

THE DENSITY-DENSITY CORRELATION FUNCTION OF A POLYME R FLUID

Consider a pure polymer fluid which is made up of a col lect ion of

identical polymer segments. Each macromolecu le contains n-segments

and the illuminated volume contains N molecules. The polarized Bril-

b u m —Rayleigh spectrum is determined mainl y by the Fourier transform

of the t ime c o r r e l a t i o n  f u n c t i o n  C ( t ) ,  g iven by ” ,

C(t ) =E ~ ~~ ~~~~~~~~~~~~~~~~~ IR~ ( t ) — R ~~ J
p p ’ .1 k ( 1)

—=---- --- -_——--
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where C(t) is the qth spatial component of the density-density corre-

lation function; p and p~ are indices denoting the macromolecules ,

and j ,  k denote the segments in a macromolecule. R~(t) is the posi-

tion (the bead position) vector of segment j and polymer p with re-
spect to the laboratory coordinate frame at time t. The summation

over p, p ,  j and k are over all polymer segments inside the scatter-
ing volume. q is the wave vector of the exci tation mode selec ted

through the Bragg condition in light scattering. The amplitude of q

is equal to

• 4lT n -
q = -i--— sinO /2  (2)

where X is the wavelength of incident light in vacuum , n is the index

of refraction and 0 is the scattering angle.

For fluids cons isting of sma ll size molecules , one can analyze C(t)

in terms of entropy and pressure fluctuations. These fluctuations can

then be calcula ted using the l inearized hydrodynamic equations with fre-

quency dependent transport coeffic ients in a manner s imi lar to that of

ordinary low viscosity fluids consisting of small molecules. As the

polymer molecule increases in size , the center of mass motion becomes

very slow and the diffusive entropy fluctuations then dom inate the time

evolution of C(t). Moreover, in ordinary low v iscosi ty fluids , the width

of the Brillouin doublet is predicted to increase with increasing vis-

cosjty.6 For polymer fluids of high viscosity this prediction would

lead to such wide Brillouin peaks that they would not be observable.

In Fig. 1 the peak frequency and linewidth of the Brillouin peak of

polypropylene glycols are shown as a function of viscosity . For the

experimental data at two temperatures the frequency as well as the line- 

--~~~~~~~~~~-- - - - —-— 
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width appear to he independent of viscosity. This is in complete dis-

agreement with theoretical results. In fact the Brillouin peaks of

highly viscous polymer fluids are quite sharp near T
g •2 The discrep-

ancy between the results of an ordinary fluid and a polymer fluid is

believed to be due to the segmental motion that is present in the

polymer fluid. The segmental notion leads to the breakdown of the

Navier-Stokes equation . As a result the usual hydrodynamic equa ti ons

cannot be used to calculate the Brillouin spectrum of a polymer fluid.

The structural relaxation which has a dominant effect on the propagation

and absorption of the hypersonic wave in a liquid consisting of macro-

molecules , but this is not adequately accounted for in the hydrodynamics

equation .

For a polymer fluid consisting of flexible polymer segments , the

correlation function C(t) is expected to depend strongly on tempera-

ture, due to the fact that the structural relaxation time of a polymer H

fluid depends strongly on temperature. At high temperature , the rate

of segmental relaxation is comparable with the frequency of the hyper-

sonic sound wave ; in this case the segmental motion will contribute

significantly to the linewidth s of the Brillouin side bands . At low

temperature , the rate of segmental fluctuations is slow compared with

the hypersonic frequency , but fast compared to the thermal diffusion

rate. In this case the segmental motion will manifest itself as a broad

-
• 

line superimposed upon the centra l Rayleigh component arising from the

translational diffusion . Therefore , the time evolution of C(t) is asso-

ciated with the whole region of the Brillou in—Raylci gh spectrum.

The question of great interest is what are the effects of the struc-

tural relaxation on the Brillouin-Ray leigh spectrum? To answer this

question a microscopic theory on structura l relaxation is in order.



_ _

In order to develop a microscopic theory for the Brillouin scat-

tering spectrum of a bulk polymer , one needs to investigate the cor-

relation function C(t) as defined in Eq. (1) which can also he writ-

t e l ,

C ( t )  = <~ p(q ,t)~ p ( q ~ >

whe re & p( t ~,t )  is the qth spa t ia l  Fourier component. of the dens i ty  fluc-

tua t ion  and is given by

= ~ iq .R~ (t) = ~ ~~~~~q:~~~~( t )
- p j  p j  (4)

where the direction of q is taken to be parallel to the Z-axis , and

each pol ymer segment I of polymer p contributes to the density fluc-

tuation by a term ~~~~~ To calculate c(t) using a microscop ic equa-

tion , we first realize that the density fluctuation does not occur in-

(lependeilt l y. The momentum and energy densi ty fluctuations couple also

to the density fluctuation . In this paper we suppress the coupling of

the density and energy . This is justified because our primary interest

lies in the study of the Brillouin doublet in which the effect of ther-

mal conductivity can be neglected for an isothermal system .

Among the three com ponent s  of momentum d e n s i t y ,  onl y the l o n g i t u d i n a l

component in the direction of q is coupled to 
~~~~~, as the coupling to the

t ransverse  components perpendicular to q is prevented by symmetry .5 The

express ion  for the long i tudinal momentum density is given by

Th - ZP t
= ~ flI~~ • Z I.(~ )~~

l
~ I

— 13 3 (5)

~-Jwre ni
,

. is the maSS  of j segment of pol ymer p.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The qth mode of the density fluctuation gives rise to two Brillouin

peaks: the Stokes and anti-Stokes peaks. The two peaks correspond to

acoustic waves propagating in two opr-site directions. We show in Ap-

pendix I that the two acoustic modes with opposite frequency , are —

represented by the dynamic variables and ~ which are given by

( • l •, (q)
~ ~~) 

+—
~~ 

)
± 

~~~~~ 

- Ig z ! - 

(6)

Thus the density fluctuation 5p can be expressed in terms of ~ and ~~~~~ ,

n - +  - 

( 7 )

The density-density correlation fun:tion C(t) is then given by

C( t) = ~~
- < t ~~ 12 > < ç t~~ > + <~~ (t )~ > ÷ <~~ (t)~ > +

(8)

where the first two terms on the right hand side of Eq. (8) corresponds

to the two acoustic waves propogating in opposite directions. The last

two terms vanish at t = 0, but are finite at t ~ 0 due to the dynamic

coupling of the two acoustic modes with opposite u~~. These can contrib-

ute to the intensity to the central Rayleigh component . These can be

neglected in calculating the spectrum of the Brillouin doublet. There-

fore , calculation of the Bri1louin spectrum reduces to the calculation

of the correlation functions given by

c÷(t) = <
~±
(t)

~ ±
>

Since both and ~ depend on the same q and give similar physical re-

- 
- suits , in the following we shall use 

~ 
for either or and C

q
(t)

for C±(t). 

~~~~~~~~ - - - - -~~~~-- -- —~~~~~~~~
—-—-.--
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In principle , if one has a prope:- expression for the equation of

motion of ~q
(t)~ the correlation function C

q
(t) can then be calculated

according to the method of irreversible statistical mechanics. Formal-

ly, the equation of motion for ~~t) is given by

~~ ~q
(t) = i L ~q

(t) 
(10)

where L is the L i o u v i l l e  operator which governs the t ime evolution of

the dynami c variable ~q(t) While i t  is stra i ght-forwa rd to wr i t e

- — 
down a forma l expression for L in terms of the kinetic and p o t e n t i a l

energy operators in a many body system , in prac t ice  t h i s  is never done

in a polymer system due to the large number of in te rna l  degree of free-

don and unknown intra- and inter-molecular potential functions. For a

dil ute po lymer sol ution , Kirkwood’ s generalized diffusion equation or

the stochastic Fokker-Planck equation has been employed to evaluate

the time correlation functions associated with the intrinsic viscosity 7

and internal viscosity 8, however , an appropriate Liouvill operator for

a bu lk  polymer has no t yet been developed.

Nevertheless , even in the absence of an appropriate Liouville

operator , useful insi ght on the behavior of the linewidth and frequency

shift of a Brilbonin spectrum of a pol ymer fluid can he obtained from

Eq. (10) using the linear response theory developed by Zwanzig9.

We start by defining a projection operator P such that when it

operates on a general function G , it yields

I’i; ~ r • i ; ’ .
‘I ‘1 ‘1

(11)

where C i s  a fun ct i ’n of and may he time dependent.

~

-- -

~ 
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The co r re la t ion  funct ion Cq ( t )  can be constructed by using P ac-

cording to

i)
~ q (t) = E 

~k
’
~ k~k

> 
~~~~~~~~~~~~~~~~~

= 

~q~~’q ’(( 
I CqIt)

(12)

where we have assumed that there is no correlation between normal modes

of different wave vectors.

According to the we l l -known  procedure 9 
, the equation of motion

for () can be shown (using Eqs. (11) and (12) to  follow a general-

ized Langevin equation ,

~Cq (t )  I -t
—--~~-~~— —-  = i 

~
“
~i 

( (t) 
—J 

d-r K ( r )  C0 (t— r)

0 (13)

where the frequency w is given by

= < [LF ]E ~~> r
q c

~ 
- c
~
’(
~ 

(14)

an d  k ( -r ) I s the memory func t  ion  g i yen by

= < I ’ ( r )  F* (0) ‘q~q 
(15)

w lie r e

i ( l - l ’ ~~LTIH r) e -‘ 1 ( O ~ (16)
and

F ( O )  = P = ( l— p )  i L 

~~ 
(17)

The generalized Langevin equation as given in Eq.  (13) is very

usefu l because of its mathem ati cal simplicity and case of application .

This equation can 1)0 used to calculate the Brillouin spectrum when the

macroscop ic hydrodynamic equations fail. Using this equation , we can

translate physical ideas about the nature of Brillouin scattering from
- 

a pol ymer fluid into mathematical terms with a minimum set of assump- 

~~~~~~~~~~~~~~ -~~~ —- - -— - -- --
~~~~~ -——---—----—~~~~~~~--~~~
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tions ahout the complex nature  of the f l u i d  s tate  of macromol ecules .

In the absence of an expl ic i t  L i o u v i l l e  operator to ca l cu la t e  Wq
and K ( - r ) ,  we can argue that  for a po l ymer f l u i d , there are strong

interactions between translational and orientationa l motions of each

segment and between segments so that the normal modes 
~q 

should equi-

librate rapidly . Thus, we may expect a set of fully quantized vibra-

tional states with an energy separation approximately equal to the hy-

personic frequency . In flexible chain molecules at ordinary tempera-

tures , the vibrational relaxation rates for the quantized vibrational

nodes are fast. Moreover , there will also be a distribution of relax-

ation times for chain segments to change from one state to another.

Therefore , for the normal mode given in Eq. (6), the frequency Wq 
may

take a real finite value . We assume that °q is equal to the undamped

hypersonic frequency. We show in Appendix I that W
q 

is related to the

isotherma l compressibility of the polymer li quid.

The memory function K(T) decays exponentially with a distribution

of relaxation times ,

K(t) =J fu r
) e t / T r dt

(18)
where f(T

r) is the distribution function of relaxation times . For a

sing le relaxation time TR’ f (T r) is proportional to a delta function

6 (
~
r
r

_ T
R

) -

Knowing u and K(T )  , we can now solve Eq. (13 )  by the  Lap la ce

t r a n s f o r m  t e c h n i que .

l ) e f i n c  I’ -zt(q (i) = / (.(1 ( t )  d dt ( 19)
- 0

K ( z ) = f  K ( t ) e z ~ dt (20)

_ _  ~~~~~- - - - - - -- --~~~~~~~--~~~~ - - A
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we obtain by taking the Laplace transform of Eq. (13),

C ( z )  =(j 1 — I (j) + K(z) (21S (I

where

K(z)  =/ __-_-I___J:

- . 

• o Z + T
r (2 2)

The Brillouin spectrum corresponds to the real part of C
q
(1W)~ We

shall call this function Iq(u). which can he calculated from Eqs. (20)

and (21). The r e su l t  for  l
q
(W) is

r r
* J T  f(-r )

- <F  ~~ -. 1 i ’i ~~
q ~r) Re C~1

( iw) = ______

if ~~~~~~~~~~~~ dT
r

]2  + 

~~~~~~~~~~~~~~~~ 
i’

(23)

APPLICAT ION TO BULK POLYMER LIQUIDS

Although it is believed in general a distribution of relaxation

times is involved in a polymer system , we shall show that the single

r e l axa t ion  t ime model pr ovides a sa t i s fac tory  in terpreta t ion  of the

Brillouin scattering spectrum of a viscoelast ic  polymer l iqu id .  To

illustrate th i s  we assume

K(T)  = A e T/ T
R 

( 24)

where T R is the re laxa t ion  t ime and A is the amplitude of K(i-) at r = 0 ,

and is given by

F k > ’j 2 
*

A -- 
~~~ - ~l l  r ~~~~~

q q (2~)

In this model , Eq. (23) reduces to

-~~~--—---
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T
R

2 ) 2 + ( w _ w
11

_ r A T 1~
2 / l + w 2 11~

2 ) ? 
~

(26)

- 

-

~
. Equation (26) can now be used to analyze the experimentally deter-

m i n e d  B r i l l o u i n  spectra of bulk polypropylene glycol . The Brillouin

snectra of this polymer liquid at various molecular weights have been

accurately measured i n  our  laboratory. To fit the experimental spec- —

* tra , one n n t ’~c that E q .  - 2~ ) contains three adjustable parameters :

- - (the unperturbed acoustic frequency), A (the amplitude of the memory

function K (-r) at t = o) and (the relaxation time of the memory func-

tion). However , the nature of these parameters is well understood and

no ambiguity to the curve fit will exist.

It is easy to show that A corresponds to the square of the modula-

tion amplitude associated with the torsional motion of polymer segments

in the direction perpendicular to the propagation direction of the hy-

personic wave .

The unperturbed acoustic fre iuency W
q 

also depends weakly on tern-

perature. According to Eq. ( 2 6 ) , the Is(1~ 
function has a maximum at

w = w , which is related to w according top q

I~~ 
:

s (1 + ,\ r 
R

+tt
p~~R

) ( 2 7)

I I (  - : ( ‘~~- s r l ~ ‘~
h l 1 I . t  I I t~ 1n 1* Ic  because \ i  1 rn -

~~r I -
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t l r i a t  ion ( 2 7 )  gives the di sn~~r~. j - ~~ relation for e .  For W T
R 

< 1 ,

the dispersion curve has i reverse S-shape when w~ i s  p lo t t ed  as a func-

t i o n  of temperature , provided tha t  we assume

= t exp (E /kT)

(2 8)

- 
-
,
‘ At h igh  temperature  one has AI R

2 << 1 , and w~ approaches wq
. Thus W

q

- ~~~ is equal approximately to the Brillouin peak frequency at high tempera-

ture when the amplitude of modulation is small compared with the relax-

ation rate.

We have used the least squares fitting procedure to fit the theo-

retical peak frequency and linewidth as computed by using Eq. (2t) to

the experimental values at various temperatures. The fit was carried

out by first generating a spectrum at one temperature using reasonable

values of A , t , and E a~ The theoretical spectrum was then compared

with the experimental one . The procedure was repeated with different

va lues  of A , i and E until the theoretical spectrum quite resembleso a

the  experimental one . Next the spectra were generated at all temper-

atures , from w h i c h  the  peak f requencies  and linewidths were read and

- - compared with the experimental values. The difference between theoret-

ical and experimental values is then minimized with a least squares

fitting program by further adjusting the values of A , t , and Ea~
In Pie. 2 , we show the Bri ll ouin peak frequencies and the spectral

Iinew idths (the half width at half height) determined by the curve fit-

tim’ procedure , also including the experimental results between 280 and

-11)0 K for c o m p a r i s o n .  The agreement between the theoretical and ex-

per irn ent nl results is quite good in this temperature region , consider-

- in g  the fact  that onl y three parameters (A, Ea and 1) were used to fit

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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‘ two separate sets of data:  frequency s h i f t s  and l i n e wi d t h s .  I t  should

also be pointed out the agreement between the experiment and theory ,

g iven in Figure 2 could be improved if we allow u
q 

to depend on tern-

perature . As shown in Appendix I~ is l)loPortinal to (px T)~~~
2 , whe re p and

are density and isothermal compressibility of the fluid , respectively.

Both quantities depend on temperature slightly. Increasing temperature

has a tendency of decreasing because PX T increases sli ghtly with in-

creasing temperature . As a result , the peak frequency and linewidth

- 

- - ‘ shown in Figure 2 will be depressed downward at high temperature and

- 
. pushed upward at low temperature , thus bringing a better agreement with

-~~ the experimental result than the fit using a temperature independent

which is used in the present work . However , since we don ’t have comp lete p and

XT data for PPCJ, the present procedure is sufficient to demonstrate the

validity of the theory.

Below 280 K , the calculated Brillouin peak frequencies are smaller

than the experimental values , due to the fact that the relaxation rate

becomes comparable to w
q 

at this temperature . In this situation ,

one would expect strong coupling between the norma l mode 
~q 

and the

velocity F , and we can no longer consider F to be a fast dynamic van -

able to modulate F~q
; both must he considered with equal weight. More-

over , since 
~
‘1q 

is about e jua l to the modulation amp litude /K, in this

situation the precise functional form of the memory function becomes

important , and we do not expect that )~q. (24) is valid at low tempera-

ture .

We now consider in more detail the quantity A , wh i ch is a measure

of the square of modulation amplitude associated with the motion of

~o1ymer segments in the direct ion perpendicular to In Apendix II,
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f’. we show that A can be written as

A = ~ <~~~~u ~iq(Z~ - z ç ) ~ + 
3kT~ 2 - ~~ 2)

2 Nm 
~~ 

} ) i  ~ 
m q

(29)

where u is the to ta l  P o ten t i a l  energy of the system and m is the j
mass of monomer. The 3kTq 2/m term can be calcu la ted  and is found to be

- -
~~ onl y about one quar te r  of the value of Wq

2 for PPG in the temperature 4
range considered. The important term for A thus comes from the

potential energy part .

We then assume that the range of intermolecular interaction po-

• t e n t i a l  is short compared with the wavelength of l i g h t  (or q~~), and

i ~~ ~in t h i s  case we can expand the phase factor  e q1~ j  - 

~~~~~~ in powers of

q. The first non-vanishing q dependent term is found to be equal to ’°
2 - 2

A = - - - — 1 1 1 E < -
p ~ Nm p p i  ~ 

1

1 3

2 1 ~~~
2

U 
- 2

(Z r
. - Z r ) >

p p 1 3 i
_ 

j (30)

According to Eq. (25), A is pos i t ive , and thus  A must he grea ter

than the W
q

2 term , this is consistent with the stability condition con-

dition for a physical system for which we always have - 2 
> ~~

- Z’? )
One notes that A vanishes when Z~ = Zr . Thus the existence of A

P 1 3 p

depends on the presence of intermolecular (or inter-segmental) inter-

actions. This result is i m p o r t a n t  in the case of d i l u t e  polymer solu-

tion , i n  which the polymer dynamics depends only on the polymer—solvent

and i utracha in  interact i O f lS

Since t In’ i utermo I ect il a r i I l t e r a c t  ion u i s  short — range , i t  may be

(-xpInd (-d i n t nf power scrie— ~~ the internn )lecul:,r (or  i n t e r — s e g —
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mental) distance along the direction q,

U = U +

‘

~~~~~~~ —-----
~~~~

-— ----- --— (Z 1’ - Z~~) + 
1 

___________

0 £~ i . 3(Zr - Z r )  
~ 2 

~~~~~j  .~~ zr - Zr)
2

p , p  ,i , j  1 3 pp ij  1 3

- 2
(Z.  - Z~~ ) + 

~~~~

. (31)

Comparing w i t h  Eq.  (31),  we may consider A~ in Eq.  (30) as the spatial —

second moment of the intermolecular potential energy. For t ~ 0 this

spatial second moment changes because of molecular motion which modu-

lates the intermolecular distance and relative orientations. For mac-
S

-- 

‘
- romolecules , the center of mass notion is s low;  the to rs iona l  motion

involving only relatively small numbers of segments is thus most effec-

tive in the modulation of the second moment .

Our computer curve-fitting result in PPG indicates that the modu-

lation amplitude V~ is insensitive to temperature variation . The value

of ~~~ is also found equal to uq 
throughout the 280 - 400 K temperature

range . On the other hand the relaxation time is found strongly tem-

perature dependent . Using Eq. (28) , we have found = 0.94 x
sec and the activation energy E

a = 3.1 ± (0.02) kcal/molc. Within the

entire temperature range we have further found that /A is less than

uni ty. This validates the second step of Eq. (27), thus indica t ing

that the Brillouin scattering spectra of PPG between 280 and 400 K may

be described in terms of a stochastic process of fast modulation .

A s po inted out above , the relaxation time cannot he associated with

the center of mass motion, but rather with the motion involving a small

number of segments. The rapid motion of a chain segment from one posi-

tion to another w ill involve a local reorga ni za t ion of the structure of

the po l ymer l i quid. The microscopic pi cture i s apparen t ly  implied  in 

—- —-— ---
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the phenomenological theory of structural relaxation in a viscous liq-

uid developed by Isakovich and Chaban .11 In reference 11, the diffu-

sion of holes taking place in the viscoelastic li quid is considered

to be the mechanism for the structural relaxation process. In our

present microscopic theory 1
R is the measurement of relaxation times

associated with the modulation of the spatial second moment of the po-

tential energy. Relaxation occurs because of fluctuations of segmental

positions . Thus, the present microscopic theory serves to provide the

Isakovich and Chaban phenomenological theory with a more satisfactory

statistical foundation.

Finally, it should be pointed out that despite the fact that we

expect in general a distribution of relaxation times for a polymer sys-

tern, the single relaxation time model seems to fit satisfactorily the

experimental results. This may be understood from Eq. (30) because

only the modulation of the short-range intersegmental interaction po-

tential can make a contribution to the memory function K(r). The dis-

persion and relaxation in the Brillouin scattering spec trum of a bulk

4 polymer liq uid involves only short-range localized segmental motions .

The distribution of relaxation times due to the motion of an entire

polymer chain will not enter into the picture . This suggests that the

Brillouin scattering spectrum of a bulk polymer liquid should be inde-

pendent of molecular weight. This is clearly in agreement with the ex-

perimental result on polypropylene glyco1.2’3’~

SUMMARY AND CONCLUSION

We have analyzed the effect of segmental motion on the density-

density correlation function of a polymer fluid. The density-density

L - - ~~~~~~~~~~ - - -  -- -——- ~~~~~



-17-

correlation function is proportional to the Fourier transform of the

Brillouin-Raylei gh spectrum which one can measure experimentally.

We have utilized the linear response theory to analyze the Bril-

b u m  spectra in terms of the dynamics of polymer chain segments in

— bulk polymer systems . We have shown that for polymer fluids of high

viscosity Brillouin scattering is due to normal modes associated with

the motion of chain segments. When the modulation amplitude is small

compared with the relaxation rate, we have shown that a single relaxa-

tion time theory will provide a satisfactory description of the hyper-

sonic frequency and Brillouin spectral linewidth data as a function of

temperature. By comparing the theoretical expression with the experi-

mental result we have also obtained the activation energy associated

with the relaxation time and the modulation amplitude. The latter

quantity is then used to delineate the mechanism involved in causing

the dispersion and attenuation of the hypersonic wave . It is found

that the localized motion which causes modulation of the second moment

of the intermolecular interaction potential is responsible for the dis-

persion and attenuation of the hypersonic wave. We have thus estab-

lished the fact that Brillouin scattering probes only short-ranged

localized motion. We have also explained why the Brillouin scatter-

ing spec trum of a viscoelas tic polymer li quid does not depend on the

molecular weight.

Another significant result in the present work is that the Bril-

b u m  spectral linewidth is related to the relaxation of a correlation

function of the velocity of normal modes associated with the chain

segments of different macromolecules . It is thus clear from the mathe-

matical point of view that the maximum position in the Brillouin line-

_ __  
- -
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width versus temperature curve will not necessarily correspond to inaxi-

mum point in the NMR T~ or CT1 ) versus temperature data because the

three techniques are sensitive to different types of relaxation pro-

cesses. We expect in general that Brillouin scattering will provide

supplementary information which cannot be obtained or extrapolated from

other relaxation techniques.
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APPENDIX I

The frequency u
q 

and the isothermal compressibil ity.

I
The frequency W

q 
given by Eq. (14) can be either positive or

negative depending on whether 
~q 

substitutes for or ~~~~~. In either

case, the derivation is similar. We give only the derivation asso-

ciated with 
~~~,

. Substituting Eq. (6) into Eq. (14) we obtain

1 6p 
_______— w —{< (L i ) —  >q 2 

< k o I2 >
~~ 

<~g~~2>½

_ _ _ _ _ _  
6

1 ) —  
0

1 >

<~g1~
2>~ < 1 6 0 12 >1 (1 ,1)

Since the Liouville operator , L, is Herntitian, Eq. (1,1) can be re-

written as

1 
<(j~~p)g~*> 

__________________= —1 (-i) + (i) —
~~~~q 2 <~ 6p I2 >l< Jg~~2>l <I 6p l 2 >l< Ig~~2>l

(1,2)

Using the definitions for 6p and 
~~ 

(Eqs. (4) and (5)) , we obtain

w = q 
(j)~ 

<~ g~~~2 >i

q 
< I 6 p ) 2 >~ (1 ,3)

Accord ing to the principle of equipaitition of energy , we have

~ <~g~~2>½ = (N.~ !~~ (1,4)

where N is the total number of segments (light scatterers) within the

scattering volume , V.

In the limit of small q, it is true that5

= (Vp 2krxT)
l = (Np~~~

1)
½ (1 ,5)



- - 
~~~~~~~~~~

(A. l.2)

where p is the number of segments per unit volume . XT is the iso-

thermal compressibility. Combining Eqs. (1 ,3), (1,4), and (1 , 5 ),  we

obtain the final expression for

-‘ = 
q = q Cq I I(pmX T) (T

where C
T 

= (Prnx T)~~ 
is the expression for the isothermal sound veloc-

ity 5. Equation (1 ,6) is exactl y the definition of isothermal sound

frequency . Similarly , for ~~~~~, the result is:

~
(lCT (1 ,7)

where , as in (1,6), both q and C1 are the absolute values.

_________________________________________
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APP E NDIX I I

Reduction of the Expression of Modulation amplitude A.

!
Since 

~q 
is normal ized , using the result of Appendix I, we reduce

• Eq. (25) to

A = {<(iL~
q
)( iL~

q
)
*
> - u

q
2} 

(11,1)

Substituti~ng Eq. (6) into the above equation , we obtain a new expres-

sion for A:

1 < (iLg 
)(j~ g~)

*>
Z

2 
< 2 > q

(11,2)

I 

- - 

Using the definition of g and the principle of equipaition of kinet-

ic energy for each segment, we now expand the first term of Eq. (11 ,2)

into

< (iLg )(iLg . (P .)
~~~

= 

~~~~~~~~ 
+ q~ ~~ 

>

+ z~z < ( P ~~~ P~~~ + iqkT(P . - P~~) + q2 (kT) 2) ~iq(Z1 - Z~)>

(11 , 3)

where the double summation Z E of Eq. (6) is replaced by the s ingle
p i

summ ation E (or E) of the segments over the whole sca tter ing volume;

the momentum of each segment in Z direction m
1~1 Z~ is replaced by ~~~

This can be done provided that each se gment has the same mass m.

We understand that the ensembly average <X> of any physical quantity X

i s equivalent to multiplying X by the distribut ion func tion ~~
-

~~
-—- and

then integrating the product over the whole phase space. We shall as-

sume that the 1-lamiltonian H has the form



II = ~ ~~~~~~~ + u ( r 1 , r2 - . - rN)
1 1 (11 ,4)

H -  - The ensembly averaging of each term in Eq. (11 ,3) can be carried out

as fol l ows ,

: <(P )2> = ~~fe 
H (p~~)2 dNr dNp

= e~~ 
H (~~~~) 2 d

N
r dNp

.— 
• 

=
~ ~Z.2 -

i (11 ,5)

where to obtain the last step , we have carried out integration by parts.

It is easy to obtain ,

~~~~ <~~~~~~~> = 3q2 (kT) 2 (11 ,6)

Likewise , we consider

~~~~~~~~ ~iq(Z. - Z~)> = 

N N  

~~~~~~~~~ 
~iq(Z. - Z~)

d r d p

= ~~~~~~~~ .1 (aZ~~z~ e
_ BH

) ~
iq (Z j - Z .)  d

N
r dNp

1 ~
2u iq(Z. - Z.)

+ 
~~ ~~~~~~~~~~~~ 

) e 1 j >

= f  [iq(~~~ e~~ 
U ) - iq (~~~ e~~ 

II ) - q 2 e~~ 
H

1

+ 

0iq(z. 
- Z~) d

Nr dNp

= q~ <~ iq(Z. — z
5
)> + M (Tr ,7)

where M = ~ <( :u
) ~

iq(Z. - Z~~~~)
> (11 ,8)

_ •_ -~~~~~~~-—~~~_--~~~~~~ ~~~~~----  - — -~~~~~~~~ -- - -----  -- •- -- - - _ — -  -~~~~~—~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



In order to obtain Eq. (11 , 7) integrations by parts have been used

repetitively.

Consider next the fourth terni in E q. (11 ,3)

iqkl <(P - ~~~~~~~ ~iq(Z. - Z~~~~)
>

= ~ f (~!~ - ~~ ) e~~~ ~iq(Z. - Z . )  dN r dNp

- 

~~~ 
~~~~~ 

iq(Z. - Z~) d
Nr dNp

= 
2q~ <~ iq (:. - Z•)>

(11 ,9)

Combining Eqs. (11 ,3), (11 ,4), (11 ,5), (11 ,6), (11 ,7) and (11 ,9),

and substituting the result into Eq. (11 ,2), we obtain the expression

for A as

A 1 1 
<~~~~u ~iq(Z. - Z~)> + 

3kJq~ - u 2 )

(11 ,10)

which is equivalent to Eq. (29) in t he  t e x t .  
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Figure Captions
1~

- 

- Figure 1 . The Brillouin peak frequency and linewid th as ~ funct ion
- of shear viscosity. The solid points are the frequency

and empty ones are the linewidth.

Figure 2. Comparison of the theoretica l and experimental Brilbouin

peak frequency and linewidth data as a function of temperature .
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